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Mordell-Weil

Let A/Q be an abelian variety (everything works more generally
over number fields).

Theorem. (Mordell-Weil)

A(Q) ∼= Zr ⊕ T ,

where

• r ≥ 0 is the rank of A(Q),

• T ∼= A(Q)torsion is finite.

Goal. Compute generators for A(Q).

• Generators for A(Q)torsion are often easy to compute.

• Suppose we have computed r and also Q1, . . . ,Qr ∈ A(Q)
which generate a subgroup of A(Q)/A(Q)torsion of finite index.



Properties

Theorem. (Néron, Tate). There is a positive semidefinite
quadratic form ĥ : A(Q)→ R with the following properties:

(a) ĥ(Q) = 0 if and only if Q is torsion.

(b) ĥ is a positive definite quadratic form on V := A(Q)⊗Z R.

(c) {Q ∈ A(Q) : ĥ(Q) ≤ B} is finite for every B ∈ R.

We call ĥ the canonical height (or Néron-Tate height) on A(Q).

Recall that the regulator of A/Q, appearing in the conjecture of
Birch and Swinnerton-Dyer, is defined using ĥ.

Back to our problem:

• Λ := A(Q)/A(Q)torsion is a lattice inside the Euclidean vector
space (V , ĥ).

• Q1, . . . ,Qr generate a finite-index sublattice Λ′ ≤ Λ ⊂ V .

Hence saturating Λ′ inside V gives Λ.



Saturation

Method 1. (Siksek, Flynn – Smart)

• Compute an upper bound u on (Λ : Λ′).

• For every prime p ≤ u check if p | (Λ : Λ′);
• if yes, find Q ∈ Λ \ Λ′ such that pQ ∈ Λ′ set Λ′ := 〈Λ′,Q〉 and

repeat;
• if no, continue with the next p.

Method 2. (Stoll) The lattice Λ is generated by

{Q1, . . . ,Qr} ∪ {Q ∈ Λ : ĥ(Q) ≤ ρ2} ,

where ρ is the covering radius of Λ′ (i.e. the maximal distance a
point of V can have from Λ′).



Basic computational problems

For both methods, we need to

(1) construct ĥ;

(2) compute ĥ(Q) for given points Q ∈ A(Q);

(3) enumerate {Q ∈ A(Q) : ĥ(Q) ≤ B} for given B ∈ R.

For (1), start with the standard height function on PN(Q):

h(x0 : . . . : xN) := log max{|x0|, . . . , |xN |} ,

where x0, . . . , xN ∈ Z and gcd(x0, . . . , xN) = 1.



Elliptic curves

Let A/Q be an elliptic curve, given by a Weierstrass equation with
integral coefficients.

Define κ : A(Q)→ P1(Q) by

κ(x : y : 1) := (x : 1) , κ(0 : 1 : 0) := (1 : 0) .

The naive height of Q ∈ A(Q) is given by

h(Q) := h(κ(Q)) ∈ R≥0 .

Tate constructed the canonical height of Q by setting

ĥ(Q) := lim
n→∞

4−nh(2nQ) ∈ R≥0 .



Jacobians of genus 2 curves

Let A/Q be the Jacobian of a curve X/Q of genus 2 and let

W : y2 = f (x) = f0 + f1x + . . .+ f6x
6

be an integral Weierstrass equation for X .

Flynn: Explicit map κ : A → P3 such that κ(A) is a model for
the Kummer surface K := A�〈−1〉 of A and κ(0) = (0 : 0 : 0 : 1).

The naive height of Q ∈ A(Q) is

h(Q) := h(κ(Q))

Again, we get the canonical height of Q by setting

ĥ(Q) := lim
n→∞

4−nh(2nQ) ∈ R≥0 .



Computational goals

Recall that we want to

(1) construct ĥ;

(2) compute ĥ(Q) for given points Q ∈ A(Q);

(3) enumerate {Q ∈ A(Q) : ĥ(Q) ≤ B} for given B ∈ R.

For (2) and (3), we use that

Ψ := h − ĥ is bounded.

Computational goals.

(I) Compute Ψ(Q) for given Q ∈ A(Q).

(II) Compute an upper bound β for Ψ.

(III) Given B ∈ R, enumerate

{Q ∈ A(Q) : h(Q) ≤ B + β} ⊃ {Q ∈ A(Q) : ĥ(Q) ≤ B} .



Néron vs. Tate

For explicit computations, Tate’s simple limit construction is not
suitable, as the size of the coefficients of 2nQ grows exponentially.

Instead, one uses Néron’s construction of Ψ as a sum of local
terms Ψv . However, this is rather more complicated...

“Il faudrait que tu m’expliques une fois ce que sont ces symboles
locaux de Néron. Je n’ai rien compris à ce que Lang en disait - et
je n’avais pas compris davantage le papier de Néron que j’ai eu une
fois entre les mains. Mais quel animal ce Néron! Sous ses air
patauds, il ne démontre jamais que des choses fondamentales!
(Letter from Serre to Grothendieck, 1964)

We construct Ψv explicitly when A = Jac(X ) and X is a curve of
genus 2 given by an integral Weierstrass equation W : y2 = f (x).

For this we first decompose 4h(Q)− h(2Q) into local terms.



Duplication on the Kummer

Recall the map κ : A → P3 such that

• κ(A) is a model for the Kummer surface K = A�〈−1〉 of A,

• κ(0) = (0 : 0 : 0 : 1).

Flynn. There are homogeneous quartic polynomials
δ1, . . . , δ4 ∈ Z[x1, . . . , x4] such that for δ = (δ1, . . . , δ4)

• the following diagram commutes:

A
[2] //

κ
��

A

κ
��

K
δ
// K

• δ(0, 0, 0, 1) = (0, 0, 0, 1).



Explicit local height correction functions

Define, for

• v a place of Q,

• Q ∈ A(Qv ),

• κ(Q) = (x1 : . . . : x4),

ε̃v (Q) := − log max{|δj(x1, x2, x3, x4)|v : 1 ≤ j ≤ 4}
+ 4 log max{|xj |v : 1 ≤ j ≤ 4} .

Then we have∑
v

ε̃v (Q) = −h(2Q) + 4h(Q) for Q ∈ A(Q) ,

and ε̃v : A(Qv )→ R is v -adically continuous and hence bounded.

If p is a prime number, then

• εp(Q) := ε̃p(Q)/ log p ∈ Z≥0,

• ε̃p(Q) = 0 if A has good reduction at p.



Decomposing Ψ

Tate’s telescoping trick shows for Q ∈ A(Q):

h(Q)− ĥ(Q) =
∞∑
n=0

4−(n+1)
(
4h(2nP)− h(2n+1P)

)
=
∑
v

∞∑
n=0

4−(n+1)ε̃v (2nQ),

so we define

Ψv (Q) :=
∞∑
n=0

4−(n+1)ε̃v (2nQ)

to get

Ψ = h − ĥ =
∑
v

Ψv .



Local computational goals

Our computational goals

(I) compute Ψ(Q) for given Q ∈ A(Q);

(II) compute an upper bound for Ψ.

now reduce to

(i) compute Ψp(Q) for given Q ∈ A(Qp) if p is a bad prime;

(ii) compute an upper bound for Ψp if p is a bad prime;

(iii) compute Ψ∞(Q) for given Q ∈ A(R);

(iv) compute an upper bound for Ψ∞

Previous algorithms are due to Flynn-Smart, Stoll, Uchida.



The “kernel” of µp

Let p be a prime of bad reduction and set

µp(Q) :=
Ψp(Q)

log p
=

∞∑
n=0

4−n−1εp(2nQ) ∈ Q≥0 .

Theorem. (Stoll) For

U := {Q ∈ A(Qp) : µp(Q) = 0}

we have

(a) U is a finite-index subgroup of A(Qp) containing the kernel of
reduction (with respect to the given model).

(b) Both µp and εp factor through A(Qp)�U.

Can we say more about U?



More structure

Let

• A be the Néron model of AZp , with component group Φ;

• A0 be the identity component of A,

• A0(Qp) denote the points in A(Qp) reducing to A0
p.

Theorem A. Suppose that WZp has rational singularities.

Then µp factors through A(Qp)�A0(Qp)
∼= Φ(Fp).

• WZp has rational singularities if R iξ∗OW vanishes for all
i > 0, where ξ : W →WZp is a desingularization.

• For the proof we suppose that WZp is normal and reduced.
• First show that εp(Q) = 0 if the reduction of Q is in the image

of the canonical morphism α : Pic0W/Zp
→ A0.

• Then use that α is an isomorphism if and only if WZp has
rational singularities.



The reduction graph

We can sometimes use Theorem A to give a formula for µp.

If the minimal regular model Xmin of XZp is semistable, then the
reduction graph R is defined as follows:

• The vertices are the irreducible components of the special
fiber Xmin

p .

• Two vertices Γ1 and Γ2 are connected by n edges, where n is
the number of

• intersection points of Γ1 and Γ2 if Γ1 6= Γ2,
• nodes of Γ1 if Γ1 = Γ2.

• We put a metric on R by giving each edge length 1

We can also interpret R as an electric network with unit resistance
along every edge.



A resistance formula for µp

Theorem B. Suppose that the minimal regular model Xmin of XZp

is semistable and WZp has rational singularities.

Let Q ∈ A(Qp) be such that its image in Φ(Fp) is represented by
Γ1 − Γ2, where Γ1 and Γ2 are components of Xmin

p . Then

µp(Q) = r(Γ1, Γ2)

is the resistance between Γ1 and Γ2 on R.

Sketch of proof. Express µp in terms of Zhang’s admissible
intersection pairing on X . The latter can then be related to the
resistance, using that we can vary Q on [Γ1 − Γ2] by Theorem A.

Every Θ ∈ Φ can be represented as Γ1 − Γ2, where the Γi are
irreducible components of Xmin

p .



General bounds

From our theorems we get formulas and sharp bounds for µp for
the most frequent reduction types. What about the general case?

Let ∆ be the discriminant of W .

Proposition. If Q ∈ A(Qp), then

µp(Q) ≤ ordp(∆)

4
.

Sketch of proof. Using Theorems A and B, show that the
statement holds when WZp is minimal and Xmin is semistable.

Then reduce to this case over an extension by studying how µp
changes when we change the model WZp .



Computing non-archimedean corrections

To compute µp, recall that

µp(Q) =
∞∑
n=0

4−n−1εp(2nQ) ∈ Q≥0 . (1)

Lemma. We have

(a) 0 ≤ εp(Q) ≤ ordp(∆),

(b) denom(µp(Q)) ≤ max
{

2, bordp(∆)2/3c
}

.

• By (1) and (a), we can approximate µp(Q) to any desired
accuracy by repeatedly applying the duplication map δ.

• For sufficiently small error, (b) lets us pin down µp(Q) exactly
using continued fractions.

• This algorithm is quasi-linear in p · ordp(∆).



Avoiding integer factorisation

Even better, we can globalize the local algorithm to compute

Ψf(Q) :=
∑
p

µp(Q) log p

for Q ∈ A(Q) efficiently without integer factorisation.

Note that

Ψf(Q) =
∞∑
n=0

4−n−1 log gn,

where gn ∈ Z is such that

log gn =
∑
p

εp(2nQ) log p .

We can compute the numbers gn by repeatedly applying the
duplication map δ and taking gcds.



The algorithm

Theorem C. Let Q ∈ A(Q). The following algorithm computes
Ψf(Q) exactly (as a rational combination of logs) in time
quasi-linear in the size of the input data.

(1) Compute bounds B, M and m, using the bounds on εp(Q)
and on denom(µp(Q)) for all bad primes p.

(2) Compute g0, . . . , gm by repeatedly applying δ, but mod ∆m+1.

(3) Compute pairwise coprime integers q1, . . . , qs and ei ,n ∈ Z≥0
such that gn =

∏s
i=1 q

ei,n
i for all n.

(4) For all i ∈ {1, . . . , s}:
(a) compute ai :=

∑m
n=0 4−n−1ei,n ,

(b) let µi be the simplest fraction between ai and ai + 1
B2M2 .

(5) Return
∑s

i=1 µi log qi .



Computing archimedean correction functions

It remains to bound and compute

Ψ∞(Q) :=
∞∑
n=0

4−(n+1)ε̃∞(2nQ) , (2)

where

ε̃∞(Q) = − log max{|δj(x1, x2, x3, x4)| : 1 ≤ j ≤ 4}
+ 4 log max{|xj | : 1 ≤ j ≤ 4} ,

and κ(Q) = (x1 : x2 : x3 : x4) ∈ K (R).

Once we have an upper bound γ∞ for ε̃∞, we can use (2) to
approximate Ψ∞. This turns out to be quasi-quadratic in the
number of correct bits of precision in the output.

Note that Ψ∞ ≤ γ∞/3.



Bounding archimedean correction functions

Using representation theory, Stoll has found an upper bound

maxj{|xj |}4

maxj{|δj(x1, . . . , x4)|}
,

which gives an upper bound γ∞ for ε̃∞.

For this, one computes quadratic forms yi = yi (x1, x2, x3, x4) and
real numbers aji and bij such that if (x1 : x2 : x3 : x4) ∈ K (R), then

• x2j =
∑

i ajiyi (x1, . . . , x4)

• yi (x1, . . . , x4)2 =
∑

j bijδj(x1, . . . , x4).

We iterate this process to get a sequence (bn)n in R4
≥0 such that

Ψ∞ ≤
4n

4n − 1
log ‖bn‖∞ for all n ≥ 1 ,

leading to a tight upper bound on Ψ∞ after a few iterations.



Enumeration

Recall that we also need to enumerate

{P ∈ A(Q) : h(P) ≤ B + β} ⊃ {P ∈ A(Q) : ĥ(P) ≤ B}

given B ∈ R, where h(P) = h(κ(P)) is the naive height of P, and
β is an upper bound for h − ĥ.

Idea. Use a different function h′ with bounded difference from ĥ
such that

• the bound for h′ − ĥ is smaller than the bound for h − ĥ;

• the enumeration of all points of bounded h′ is no more
difficult than for h.



Optimizing the naive height

For a place v , set

|f |v := max{|f0|v , . . . , |f6|v}.

For Q ∈ A(Q) with κ(Q) = (x1 : x2 : x3 : x4), we set

h′(Q) :=
∑
v

log max{|x1|v , |x2|v , |x3|v , |x4|v/|f |v}

to give all Kummer coordinates roughly the same weight.

Slightly adapting the methods discussed above for bounding h − ĥ,
we usually get a much smaller bound for h′ − ĥ than for h − ĥ.

For the enumeration, we use that

h(x1 : x2 : x3) ≤ h′(Q) .



Example: The record curve

Consider the curve X given by

y2 = 82342800x6 − 470135160x5 + 52485681x4

+ 2396040466x3 + 567207969x2 − 985905640x + 247747600 .

• #X (Q) ≥ 642 (current record for genus 2, found by Stoll),

• A = Jac(X ) has rank 22 (assuming GRH) and trivial torsion
over Q.

• Previous results due to Stoll give

h − ĥ < 40.1 + 7.7 = 47.8 .

• We use a modified naive height h′ and show

h′ − ĥ < 20.43 + (−19.25) = 1.18 .

• Using this smaller bound, we show that the differences of the
rational points on X generate A(Q).


